Telegram Group & Telegram Channel
Как dropout влияет на скорость обучения и использование памяти

📍Dropout немного увеличивает вычислительную нагрузку из-за необходимости генерировать и применять случайную маску. В таких фреймворках, как PyTorch и TensorFlow, эта нагрузка обычно мала на фоне общего обучения, но может стать заметной при большом количестве слоёв с dropout.

📍Что касается памяти — маска бинарная и хранится только для активного батча, поэтому рост потребления памяти незначителен. Однако при больших батчах и множественных dropout-слоях возможно дополнительное потребление памяти.

❗️При сложных архитектурах с ветвлениями dropout может фрагментировать память GPU и замедлять обучение. На современных GPU это редко становится проблемой, но в условиях ограниченных ресурсов (например, на мобильных устройствах) даже такая лёгкая регуляризация может оказаться ощутимой, и тогда стоит рассмотреть альтернативы.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/929
Create:
Last Update:

Как dropout влияет на скорость обучения и использование памяти

📍Dropout немного увеличивает вычислительную нагрузку из-за необходимости генерировать и применять случайную маску. В таких фреймворках, как PyTorch и TensorFlow, эта нагрузка обычно мала на фоне общего обучения, но может стать заметной при большом количестве слоёв с dropout.

📍Что касается памяти — маска бинарная и хранится только для активного батча, поэтому рост потребления памяти незначителен. Однако при больших батчах и множественных dropout-слоях возможно дополнительное потребление памяти.

❗️При сложных архитектурах с ветвлениями dropout может фрагментировать память GPU и замедлять обучение. На современных GPU это редко становится проблемой, но в условиях ограниченных ресурсов (например, на мобильных устройствах) даже такая лёгкая регуляризация может оказаться ощутимой, и тогда стоит рассмотреть альтернативы.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/929

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Библиотека собеса по Data Science | вопросы с собеседований from ca


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA